TM   55-4920-401-13&P
(4)   Probe   Controller.   The   probe   controller
portion   of   the   tester   contains   circuitry   that   con-
tyrols   the   heating   of   various   types   of   temperature
probes.   The   temperature   to   which   a   probe   is   to   be
heated  is  set  using  the  PROBE  CONTROL  while  ob-
serving   the   setting   on   the   TEMP   ºC   indicator.   Pre-
cision  thermocouples  in  the  temperature  probes  ac-
curately   measure   the   probe   temperature   which   is
displayed   by   the   TEMP   ºC   indicator.   Both   the   set
temperature   signal   and   the   measured   temperature
signal   are   appplied   to   a   voltage   comparator   in   the
probe   control   circuit.   This   circuit   drives   the   gates   of
SCR's   1   and   2   and   controls   the   application   of   full-
wave   power   from   transformer   T1   to   the   heater
probes.   The   PROBE   POWER   lamp   burns   con-
tinously   when   continuous   power   is   applied   to   the
probes.  It  extinguishes  when  power  is  removed  from
the   probes   and   flahses   when   their   temperature   is
regulating.
(5)   Insulation   Check   Circuit.   This   circuit
measures   the   insulation   resistance   between   the   air-
craft   thermocouple   harness   and   aircraft   ground.
The   INSULATION   CHECK   meter   is   an   ohmmeter
having   two   ranges-RX100   and   RX1000.   The   circuit
is   powered   by   a   9   vdc   supply   on   the   probe   control
and  function  switch  board.
(6)   Resistance   Check   Circuit.   T h e    r e-
sistance   check   circuit   is   used   to   check   and   adjust
the   resistance   of   the   aircraft   thermocouple   circuit.
The   RESISTANCE   CHECK   meter   is   the   gal-
vanometer  of  a  Wheatstone  bridge.  One  leg  of  the
bridge   contains   a   precision   wirewound   resistor   se-
lected   with   the   RESISTANCE   &   A/C   INDICATOR
CHECK   switch.   The   other   leg   contains   the   aircraft
thermocouple   circuit   (less   the   indicator).   Correct   re-
sistance   is   obtained   in   aircraft   circuit   by   adjusting
resistance  spool  while  observing  galvanometers.
(7)   Aircraft   Indicator   Check   Circuit.   T h is
circuit   may   be   used   to   check   the   calibration   of   both
D-Arsonval   and   null-balance   type   egt   indicators.
The   appropriate   aircraft   indicator   circuit   is   selected
with   the   RESISTANCE   and   A/C   INDICATOR
CHECK   switch.   Calibration   signals   are   adjusted
with   the   A/C   IND   ADJ   while   they   are   read   on   the
TEMP   °C   indicator.   Calibration   signals   are   com-
pared   with   aircraft   indicator   readings   to   determine
the   error   in   the   aircraft   indicator.
b.   Detailed   Theory   of   Operation.   The   detailed
theory   of   operation   will   be   discussed   in   the   follow-
ing   order:
(1)   A/d   conversion.
(2)    Temperature    indicator.
(3)
(4)
(5)
(6)
(7)
(8)
(9)
Temperature   signal   circuits.
%   rmp   indicator.
%   rpm   signal   circuits.
Standard   day   correction   circuit.
Heater   probe   control   circuit.
Insulation   check   circuit.
Resistance   check   circuit.
(10)  Power   supplies   and   power   distribution.
(11)  Logic   circuitry.
Logic  levels  and  integrated  circuits  used  in  the
tester   are   described   in   paragraph   1-4b,  1-11  c a nd
following.
(1)   A/D   Conversion.
(a)   An   Overview.   Figure  1-3  is  a  block  dia-
gram  of  circuitry  common  to  both  tester  A/D  con-
verters.   The   A/D   converters   use   the   dual-slope   in-
tegration   technique.   The   slopes   refer   to   the   charge
and   discharge   curves   of   intergrating   capacitor   C,
figure   1-3.   C   is   charged   by   the   integrator   during   a
fixed   interval   of   time   called   the   signal   integration
period   when   the   amplified   input   signal   is   allowed   to
pass   through   the   signal   field-effect   transistor
(FET)   switch   and   drive   the   integrator.   The   signal
integration  period  is  controlled  by  the  continuously
running   clock   oscillator,   BCD   decade   counters,
BCD-DAC  decoding,  and  FET  switch  control.  At  the
conclusion   of   the   signal   integration   period,   which   is
the   beginning   of   the   reference   integration   period,
the   counters   are   reset,   the   signal   FET   switch   is
opened,   and   the   appropriate   reference   FET   switch
(+  or  -  reference)  is  closed.  During  the  reference  in-
tegration   period,   the   integrating   capacitor   is   dis-
charged   by   the   integrator.   The   discharging   voltage
is   a   +5   vdc   if   the   input   signal   is   negative   and   it   is
the   output   of   a   precision   negative   reference   voltage
divider   if   the   input   signal   is   positive.   If   the   input
signal   is   in-range,   the   comparator   detects   the   in-
stant   the   capacitor   is   completely   discharged   and
clocks   flip-flop   FF1A,   causing   the   generation   of   a
transfer-to-memory   pulse,   ending   the   reference   in-
tegration   period.   Transfer-to-memory   (TRANSFER,
fig.   1-3)   shifts   the   reference   integration   period
count,   which   represents   the   digitized   input   signal,
into   the   latches   of   the   counter-latch-decoders,   up-
dating   the   display.   If   the   input   signal   is   negative,
this  fact  is  detected  by  FF2A  at  the  start  of  the  ref-
erence   integration   period   and   FF2A   causes   FF1A
to  be  cleared,  generating  transfer-to-memory.  If  the
input   signal   exceeds   the   range   of   the   indicator,   out-
of-range   decoding   causes   FF1A   to   be   cleared   and
generate   transfer-to-memory.   A   positive   or   nega-
1 - 4 A / ( 1 - 4 B    b l a n k)